Applying geospatial data for Machine Learning, with a focus on social good

In partnership with Data Science for Social Good Portugal, we are launching a series of webinars in AI topics related to social good. The first talk was by Paulo Maia, on the 28th of June, with the topic “Applying geospatial data for Machine Learning, with a focus on social good”. In case you weren’t able to register in time or attend the talk, it is available on the link below.

The main topics of this talk in Geospatial Machine Learning are:

  • Ways of representing geospatial data as inputs for machine learning models
  • Most common models for doing so
  • Pipeline for spatiotemporal problems and the most common types of problems in the literature
  • Example of possible use cases which use geospatial data (focus on social good issues)
  • Discussion + Q&A

 

 

The presented slides are shown below:

Slides are available here.

Like this story?

Subscribe to Our Newsletter

Special offers, latest news and quality content in your inbox once per month.

Signup single post

Consent(Required)

Recommended Articles

Article
A new era has arrived for NILG.AI

Today is NILG.AI’s fourth anniversary. Happy birthday to us! For most humans, birthdays are a synonym for getting older and leaving the good days of the youth behind. For companies, they are a moment to reflect on everything we achieved, recognize how far we have come, and envision how far we will go. So, let’s […]

Read More
Article
Privacy Preserving Machine Learning

Trip data is any type of data that connects the origin and destination of a person’s travel and is generated in countless ways as we move about our day and interact with systems connected to the internet. But why is trip data sensitive? The trips we take are unique to us. Researchers have found that […]

Read More
Article
Local vs. global optimization

Is the fastest route always the best? This article may give you a different perspective if your answer is yes. Normally there are multiple ways to tackle a given problem or task, and the optimization field is no different, as there are different approaches we can take to find an optimal solution. The choice of […]

Read More